

ECOLOGICAL & ECONOMIC IMPACTS OF LAND USE AND CLIMATE CHANGE ON COASTAL FOOD WEBS & FISHERIES

How Do Environmental Risks Affect the Profitability of the Aquaculture Industry in Florida?

Edgar Marcillo, Kelly Grogan, Christa Court, Olesya Savchenko, Roberto Koeneke

Background

- Clam aquaculture is a significant industry on Florida's Gulf of Mexico coast.
- The Florida aquaculture sector has developed a network of complementary sectors.
- However, clam aquaculture faces strong environmental challenges related to water quality.
 - Harmful Algal Blooms (HAB)
 - Low salinity
 - High temperatures.

Total number of clam shellfish leases by county

Data Source: FDACS, Public Record Center (2021). FDCA administers the leases, and each lease is 2 acres in size.

Objective

- We create a bioeconomic simulation model to examine the impact of environmental risk on the profitability of clam aquaculture activity at the county level in Florida's Gulf of Mexico.
- We estimate stochastic models taking into account several scenarios at county level.

Main Environmental Risks

HAB

- Shellfish harvesting areas are closed
- Clam producers must suspend operations
- Producers lose profit

Low Salinity Water

- Water salinity, < 10 ppt
- Increase in mortality rate

Hight Temperature Water

- Water temperature, >31°C
- Reduced growth of clams.
- Increase in mortality rate.

Bioeconomic Model – Stochastic Simulations

1. Biological model

- Growth function (high temperature events decrease growth)
- Mortality function (low salinity and high temperature increase mortality)

2. Economic model

- Cost function
- Revenue function (HAB events close harvesting areas)
- Profit function
- Net Present Value

1. Biological Model

• Growth Function

$$L_{t} = \begin{cases} L_{\infty} [1 - e^{(-K(t-t_{0}))}], & \text{if } T_{t} = 0\\ L_{t-1}, & \text{if } T_{t} = 1 \end{cases}$$
(1)

 L_t is the clam height L_∞ is the asymptotic height k is the growth rate coefficient

 t_0 is the theoretical age with zero height

T_t is a binary variable that equals one under high temperatures events

Bertalanffy growth function under high temperature events

1. Biological Model (Mortality and Harvest)• Mortality

$$M_{t} = M_{t1} + M_{risk,t}$$
(2)

$$M_{risk,t} = \begin{cases} M_{2t} + M_{3t}, \text{ if } S_t = T_t = 1\\ M_{2t}, \text{ if } S_t = 1 \text{ and } T_t = 0\\ M_{3t}, \text{ if } S_t = 0 \text{ and } T_t = 1\\ 0, \text{ Otherwise} \end{cases}$$
(3)

 M_t is the total mortality M_{t1} is the natural mortality M_{t2} is the low salinity mortality M_{t3} is the high temperature mortality

 S_t is a binary variable for low salinity events T_t is a binary variable for high temperature events

• Harvest

$$N_{ti} = \left[N_{ti-g} - \sum_{m=0}^{g} (N_{ti-m} M_t) \right]$$
(4)
$$H_t = \begin{cases} 0, & \text{if } A_t = 1 \\ H_t, & \text{if } A_t = 0 \end{cases}$$
(5)

 N_{ti} is the number of remaining clams in any cohort i N_{ti-g} is the number of clams planted g months ago in cohort i H_t is the number of harvested clams at month t A_t is a binary variable to define the presence of HAB events.

2. Economic Model

- Cost
- $C_t = N_t w_t l_t + N_t v_t \tag{6}$
- Revenue
- $R_{t} = \sum_{q=1}^{3} \delta \mathbf{H}_{t} D_{q} P_{q,t}$ (7)
- Profit
- $\pi_t = R_t C_t \tag{8}$
- Net Present Value

NPV =
$$\sum_{y=1}^{10} \frac{\sum_{t=1}^{12} \pi_t}{(1+r)^y}$$
 (9)

- C_t is the total cost per clam at month N_t is the number of planted clams w_t is the wage rate per minute l_t is the number of minutes of labor used per clam v_t is the capital cost per clam at month
- R_t is the revenue δ is the % of clams that achieve market size D_q is the probability of being a clam of type q (1", 7/8", and pasta), $P_{q,t}$ is the price per clam for type q

Data: Harmful Algal Blooms

Samples with HAB

Probability of HAB by Month and County (2000 - 2022)

Note: The HAB database come from FWC and FWRI. Red points represent samples with more than 5,000 cells per liter (Karenia brevis organism) Note: the probability is equal to the number of months with HABs presence (more than 5,000 cells per liter) dived by total number of months between 2000 and 2022 (23).

Data: Low Salinity

Samples with Low Salinity

Probability of Low Salinity by Month and County (2000 - 2022)

Note: Data comes from FDACS from 2000 to 2022. Red points represent samples with less than 10 ppt. Note: The probability is equal to the Number of months with average low salinity (less than 10 ppt.) dived by total number of months between 2000 and 2022 (23).

Data: High Temperature

Samples with High Temperature

Probability of High Temperature by Month and County (2000 - 2022)

Note: Data comes from FDACS from 2000 to 2022. Red points represent samples with more than 31°C.

Note: The probability is equal to the Number of months with average high temperature (more than 31°C) dived by total number of months between 2000 and 2022 (23).

Stochastic Simulations

Our analysis simulates a representative clam grower where we take into account deterministic and stochastic variables.

1. Deterministic variables: Decisions made by growers.

- Planted clams
- Labor minutes per clam
- The capital used per clam

2. Stochastic variables: Variables that growers can not control

- Mortality rates (natural, low salinity, and high temperature)
- Environmental risk events (HAB, low salinity, and high temperature)
- Type of clam (1",7/8", and pasta)
- Prices (we assume no stochastic constant prices)

List of Parameters

Parameter	Symbol	Value	Unit	Source
Biological Model				
Asymptotic height of the clam	L_{∞}	85.86	mm	(Jones et al., 1990)
Growth rate coefficient	k	0.35	year ⁻¹	(Jones et al., 1990)
Theoretical age when clams have zero length	t_0	0.28	year	(Jones et al., 1990)
Market size	L	25.4	mm	(IFAS, 2014)
Economic model				
Wage rate per clam	W	0.009	\$USD	(IFAS, 2014)
Number of minutes of labor used per clam	l	0.036	minutes	(Adams et al., 2004)
Capital cost per clam	V	0.035	\$USD	(IFAS, 2014)
Little neck size (1") size price	P_{q1}	0.16	\$USD	(IFAS, 2014)
7/8" size price	P_{q2}	0.14	\$USD	(IFAS, 2014)
Pasta size price	P_{q3}	0.08	\$USD	(IFAS, 2014)
Proportion of clams that achieve market size	δ	0.95	%	(Moor et al., 2022)
Discount rate	r	0.06	%	(IFAS, 2014)
Number of plated clams	N	66,667	units/month	(IFAS, 2014)
Probability of Little neck (1")	D_{q1}	0.7	%	(IFAS, 2014)
Probability of 7/8"	D_{q2}	0.2	%	(IFAS, 2014)
Probability of pasta	D_{q3}	0.1	%	(IFAS, 2014)

Results - Simulation for Net Present Value by County (10 years)

Note: We use 1,000 iterations per month, as we have 120 months, then 120,000 iterations.

Relative Change

Data Source: FDACS, Public Record Center (2021). FDCA administers the leases, and each lease is 2 acres in size.

Conclusions

- Counties in the northern part of the west coast are more affected by low salinity events, while the counties in southern areas are more affected by HAB events.
- Considering the number of leases per county, Levy and Franklin are the most affected counties where the low salinity risk is the main issue for these counties.

Thank you! emw2b@missouri.edu

